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TIW note presents the results of a study of convective heat 
transfer in three-dimensional stagnation point flows. The 
properties of the gas are characterized by density inversely 
proportional to enthalpy, and viscosity proportional to 
enthalpy raised to some power. This model gas eliminates 
enthalpy as a parameter but retains the essential features of 
real gas flows. 

Poots [l] presented detailed results for three-dimensional 
stagnation point flow of a gas with Prandtl number of unity 
and viscosity proportional to temperature. This work was 
extended to include mass transfer and nonunity Prandtl 
number by Libby [2] who considered shapes ranging from 
spheres to saddle points with adverse and favorable pressure 
gradients of equal magnitudes. The present investigations 
extend the no-mass transfer results by using more realistic 
variations of gas properties. 

A detailed derivation of the three-dimensional stagnation 
point boundary-layer equations was given by Libby [2]. For 
convenient reference, only the transformed equations are 
shown here. 
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where 
a = inviscid velocity gradient in the principal direction; 

C = (p&(pd,; 
f = stream function such that f; = udui,,; i = 1.2; 
g = hih,; 
h = enthalpy ; 

K = ratio of transverse to principal plane pressure gra- 
dients ; 

Pr = Prandtl number; 
.z = coordinate normal to the surface ; 
p = viscosity; 

‘, = (y)ill(;)di; 

p = density. 

Primes denote differentiation with respect to r/. Subscripts 1 
and 2 refer to the principal and transverse directions respec- 
tively. Subscript e denotes evaluation at the edge of the 
boundary layer; inner boundary conditions are denoted by 
the subscript s. 

The set of governing equations (1) is subject to the boundary 
conditions 

r/=0 f;=o=f;; fi = 0 = f2 ; 9 = gs @a) 
q + cxz f; + 1.0; f2 + 1.0; g + 1.0. (2b) 

The gas properties are given by 

pub-‘; pah” ; Pr = 0.7. (3) 

Values of s1 equal to @5,0,7 and 1.0 were considered so that 
real gas properties could be approximated over a wide range 
of temperatures. Wall enthalpy ratios, g,,ranging from OQOO1 
to 2.0 were considered for values of the transverse pressure 
gradient parameter K ranging from - 1.0 to 1.0. 

The Prandtl number was taken as constant because in 
most atmospheric flight problems its variation in the boun- 
dary layer is quite small (usually <5 per cent from mean 
value). 

The method employed to compute the results presented 
here was developed in [3] as an application of the techniques 
of modem functional analysis to the general problem of 
multicomponent three-dimensional boundary-layer flows. 
Complete details of the basic theory and numerous examples 
of applications to several classes of problems are given in [3]. 
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In essence, 
cedures to 

the method extends 
problems for which 

schemes generally diverge 

the use of iterative pro- 
straightforward iteration 

The accuracy of the calculations was established by com- 
parison with the C = 1, Pr = 1 results of Poots. 

Table 1. Comparison ofg’(0) results with those of Poots [2] 

9. = 0 gs = 2.0 
_. 
K 

Poots 
Present 

calculations Poots 
Present 

calculations 

1-o 06989 0.6990 -0.8102 -0.8103 
0.5 0.6069 0.6069 - 0.7076 - 0.7076 
0.0 05067 05066 -0.6156 -0.6156 

In addition a check was made against the C = 1, Pr = 1, 
gs = 1 results of Davey [4], who showed that f;(O) = 0 
when K = @4294. Using 200 integration steps across the 
boundary layer the present calculations yielded 

K = -0.4293 f;‘(O) = 0~00015 

K = -0.4294 f;(o) = -0000001. 

Since only single precision calculations were made on the 
IBM 36Oj65 computer, no claims of six-decimal-place 
accuracy may be made, and the agreement is considered to 
be satisfactory. Only about 3 s of machine time were required 
for each calculation, and all the calculations were completed 
in a few parameter runs of several dozen cases each. 

The heat transfer calculations reported here are presented 
in terms of a non-dimensional heat transfer parameter which 
is defined by the relation. 

(4) 

This particular definition is adopted because it contains most 
of the effects of variation of physical properties in the boun- 
dary layer. The commonly used parameter of the wall value 
of the ratio of Nusselt number to the square root of the Rey- 
nolds number is equal to Pr,l/C$. 

The appearance of minima in the I vs. K curves shown in 
Figs. 1 and 2 is readily deduced from the variations of the 
wall shear stresses shown in Figs. 3 and 4. The explanation 
for the behaviour of r, lies in the well-known feature of two- 
dimensional flows where “cold wall” boundary layers are 
quite insensitive to pressure gradients. The flow is dominated 
by the strong favorable pressure gradient in the principal 
plane for all values of gS and the effect of the transverse 
pressure gradient decreases with increasing gs The effect 
of K on heat transfer may now be explained in terms of the 
known decrease of heat transfer rate with a decrease of the 
convection in the boundary layer. Figure 4 shows that tr 
and hence convection decreases with decreasing K and, 
therefore, that g’(0) decreases with decreasing K until at some 
negative K the velocity profiles are reversed. At this stage 
the transverse convection in the critical region near the wall 
is reversed and subsequently increases as K decreases; 
total convection thus increases with decreasing K, and 
consequently the heat transfer rate increases. 

FIG. 1. Variation of the heat transfer parameter ,I with K. 
Pr = @7, sr = 0.5. 
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K 

FIG. 2,Variation of the heat transfer parameter I with K. 
Pr = @I, s, = @I. 

When the heat transfer parameters are normalized by 1 
computed with C, = 1.0, the effects of geometry practically 
disappear. In Fig. 5, where the average values of I for all K 
(at a given gJ are plotted against C, the maximum deviation 
from the average value of 1 is seen to be less than 2 per cent 
for all values of g, and K. When the data are approximated 
with a least square error curve tit, then, for C, < 5, 

1* = l/l,,= 1.0) = cy (51 
with an r.m.s. error of 3.5 per cent. In this range, the overall 
correlation, which includes all the effects of geometry and 
gas properties, is within 5 per cent of the exact results. 
Equation (5) is written in terms of the heat transfer 
parameter It,= 1 .,,) calculated in [3]. For convenient reference, 
an abbreviated table of I with C = 1.0 is taken from [3]. 

I.6 
g* =2.0 

I.5 

I 1 I I I I I I I I 
- I .o -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 I.0 

K 

FIG. 3. Variation of the principal wall shear stress rr with K. 
PY = 0.7, s, = 05. 
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FIG. 4. Variation of the transverse wall shear stress TV with K. 
Pr = 07, s, = OS. 

. 

IO 

Table 2. Nondimensional heat transfer parameter 1, s, = 1.0; Pr = @7 
________~~ 

gs = hihe 
K --- 

_.~__~_““‘_~_““‘___.“‘_~~~_. 04 0.6 0.8 1.5 2.0 

1.0 0.8657 08667 @8751 08854 0.9035 0.9203 0.9360 0.9842 1.0137 
0.6 0.7751 07760 07843 0.7933 0.8100 0.8255 08485 0.8836 09107 
0.2 0.6758 0.6768 06853 06944 0.7111 0.7265 0.7405 @7836 0.8098 
00 0.6233 0.6243 0.6339 0.6440 0.6623 0.6790 06945 0.7398 0.767 1 

-0.5 W5340 05362 05547 0.5728 06035 0.6295 06525 07162 0.7525 
-0.75 OX5041 06058 0.6203 0.6353 0.6623 0.6890 07110 07736 08003 
- 1.0 06983 @6987 @7130 0.6601 0.7540 07865 0.8075 0.8534 08692 

REFERENCES I4- 
1. G. POOTS, Compressible laminar boundary-layer flow at a 

point of attachment, J. Fluid Mech. 22 (part l), 197-208 
(1965). 

2. P. A. LIBBY, Heat and mass transfer at a general three- 
dimensional stagnation point, AIAA JI 5,507-5 17 (1967). 

3. A. WORTMAN, Mass transfer in self-similar laminar 2 
boundary-layer flows, Northrop Corporation Report, 
August 1969 (also Doctoral dissertation in Engineering 
and Applied Science at UCLA, Aug. 1969). 

4. A. D~vay, Boundary-layer flow at a saddle point of 

attachment, J. FIuid Mech. 10, 593-610 (1961). 

FIG. 5. Correlation of the normalized heat transfer parameter 
with C,. Pr = 07. 


